The laboratory work
Gradient descent
convex_grad_surrogate.py is a toy wrapper to illustrate the path
taken by gradient descent. The steps are evaluated
at the objective, and then plotted. For the first 5 iterations the
linear surrogate used to transition from point to point is also plotted.
The plotted points on the objective turn from green to red as the
algorithm converges (or reaches a maximum iteration count, preset to 50).
#
The (convex) function here is
#
[bookmark: _GoBack]# g(w) = log(1 + exp(w^2))
from numpy import *
from matplotlib.pyplot import *
#from pylab import *
import time

def obj(y):
 z = log(1 + exp(y**2))
 return z
def grad(y):
 z = (2*exp(y**2)*y)/(exp(y**2) + 1)
 return z
def surrogate(y,x):
 z = obj(y) + grad(y)*(x - y)
 return z

ML Algorithm functions
def gradient_descent(w0,alpha):
 w = w0
 obj_path = []
 w_path = []
 w_path.append(w0)
 obj_path.append(log(1 + exp(w**2)))

 # start gradient descent loop
 grad = 1
 iter = 1
 max_its = 50
 while linalg.norm(grad) > 10**(-5) and iter <= max_its:
 # take gradient step
 grad = (2*exp(w**2)*w)/(exp(w**2) + 1)
 w = w - alpha*grad

 # update path containers
 w_path.append(w)
 obj_path.append(log(1 + exp(w**2)))
 iter+= 1
 # show final average gradient norm for sanity check
 s = grad**2
 s = 'The final average norm of the gradient = ' + str(float(s))
 print(s)

 # # for use in testing if algorithm minimizing/converging properly
 # obj_path = asarray(obj_path)
 # obj_path.shape = (iter,1)
 # plot(asarray(obj_path))
 # show()

 return (w_path,obj_path)

plotting functions

def main():
 alpha = 0.12
 x = [1, 3, 5, 10, 15, 20]
 #scatter (x,obj(x), s=420, c='g', alpha=1)
 w0 = float(x[0])
 w_path,obj_path = gradient_descent(w0,alpha) # perform gradient descent

main()
